1

**1.** Combine the following fractions and express in fully reduced form.

$$\frac{3}{4x} + \frac{2}{x}$$

**2.** Combine the following fractions and express in fully reduced form.

$$\frac{5}{2x-1} - \frac{-4}{2x-1}$$

**3.** Combine the following fractions and express in fully reduced form.

$$\frac{x}{6}-\frac{2x}{3}$$

**4.** Perform the operation and combine to one fraction.

$$3 + \frac{1}{x+6}$$

5. Perform the operation and combine to one fraction.

$$\frac{7}{x+1}-\frac{2x}{x+3}$$

**6.** Perform the operation and combine to one fraction.

$$\frac{1}{x-10}-\frac{7}{10-x}$$

**7.** Perform the following operation and express in simplest form.

$$\frac{3x}{x-2}\cdot\frac{x^2-4}{x^2+3x+2}$$

**8.** Perform the following operation and express in simplest form.

$$\frac{x^2 + 5x - 36}{x + 5} \div \frac{x^2 - 16}{x + 4}$$

**9.** Perform the following operation and express in simplest form.

$$\frac{3x}{2x} \div \frac{x^2 - 81}{x^2 + 11x + 18}$$

- **10.** Fully simplify:  $\frac{\frac{x-7}{10} + \frac{1}{x}}{\frac{1}{2} \frac{x}{4}}$
- **11.** Fully simplify:  $\frac{\frac{1}{x^2} 1}{\frac{x+6}{5} + \frac{1}{x}}$
- **12.** Fully simplify:  $\frac{\frac{2}{x}-1}{\frac{x-7}{10}+\frac{1}{x}}$

**13.** Write the expression below as a single logarithm in simplest form.

$$3\log_b 3 - \log_b 9$$

**14.** Write the expression below as a single logarithm in simplest form.

$$2\log_b 10$$

**15.** Write the expression below as a single logarithm in simplest form.

$$\log_b 10 + \log_b 10$$

16. Expand the logarithm fully using the properties of logs. Express the final answer in terms of  $\log x$ .

$$\log 2x^4$$

17. Expand the logarithm fully using the properties of logs. Express the final answer in terms of  $\log x$ , and  $\log y$ .

$$\log \frac{x^4}{y}$$

18. Expand the logarithm fully using the properties of logs. Express the final answer in terms of  $\log x$ , and  $\log y$ .

$$\log x^2 y$$

**19.** Express as a complex number in simplest a+bi form:

$$\frac{-22-10i}{3+8i}$$

**20.** Express as a complex number in simplest a+bi form:

$$\frac{4-3i}{-5-3i}$$

**21.** Express as a complex number in simplest a+bi form:

$$\frac{-10-76}{6+8i}$$

- **22.** Convert the angle  $\frac{5\pi}{3}$  radians to degrees.
- **23.** Convert the angle -4 radians to degrees, rounding *to the nearest 10th*.
- **24.** Convert the angle  $\frac{5\pi}{2}$  radians to degrees.
- **25.** Convert the following angle from degrees to radians. Express your answer in simplest form.

$$195^{\circ}$$

**26.** Convert the following angle from degrees to radians. Express your answer in simplest form.

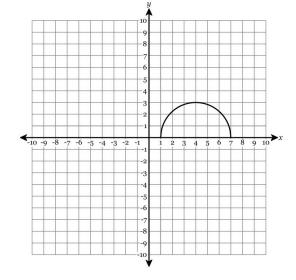
$$480^{\circ}$$

**27.** Convert the following angle from degrees to radians. Express your answer in simplest form.

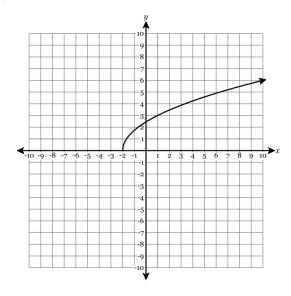
$$600^{\circ}$$

**28.** Simplify the expression completely if possible.

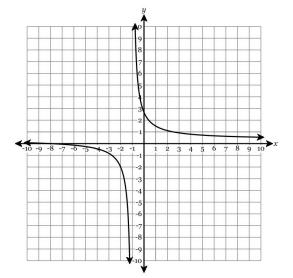
$$\frac{x^2 - 9x}{2x^2}$$


**29.** Simplify the expression completely if possible.

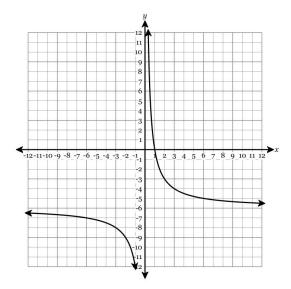
$$\frac{x^2 - 16}{x^3 + 4x^2}$$


**30.** Simplify the expression completely if possible.

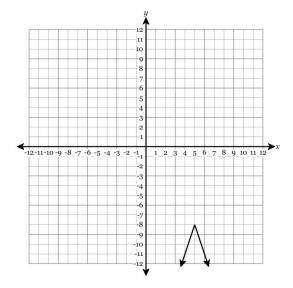
$$\frac{3x^2 + 9x}{x^2 - 7x + 10}$$


**31.** What is the domain of the function shown in the graph below?

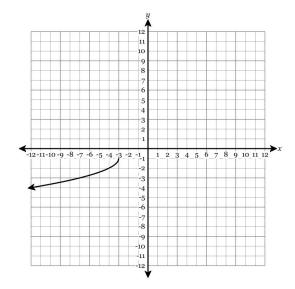



**32.** What is the domain of the function shown in the graph below?




**33.** What is the domain of the function shown in the graph below?




**34.** What is the range of the function shown in the graph below?



**35.** What is the range of the function shown in the graph below?



**36.** What is the range of the function shown in the graph below?



**37.** Solve the equation for all values of x.

$$|5x - 6| - 6 = 2x$$

**38.** Solve the equation for all values of x.

$$|4x + 7| - 2 = 5x$$

**39.** Solve the equation for all values of x.

$$|2x+3|=x$$

**40.** Solve the following inequality *algebraically*.

$$5|x-6|-5<45$$

**41.** Solve the following inequality *algebraically*.

$$4|x-5|+7 \ge 51$$

**42.** Solve the following inequality *algebraically*.

$$2|x+7|-1 \le 11$$

**43.** Solve for a positive value of x.

$$\log_2(128) = x$$

**44.** Solve for a positive value of x.

$$\log_x(16) = 4$$

**45.** Solve for a positive value of x.

$$\log_8(x) = 3$$

**46.** Write the log equation as an exponential equation. You do not need to solve for x.

$$\log_{5x}(5x) = 2x$$

**47.** Write the log equation as an exponential equation. You do not need to solve for x.

$$\log\left(x-9\right)=2$$

**48.** Write the log equation as an exponential equation. You do not need to solve for x.

$$\log_8(5x+9) = 3$$

**49.** If x and y are in direct proportion and y is 3 when x is 9, find y when x is 12.

- **50.** If x and y vary directly and y is 2 when x is 6, find y when x is 15.
- **51.** If x and y vary directly and y is 32 when x is 4, find y when x is 12.
- **52.** If p is inversely proportional to the square of q, and p is 6 when q is 8, determine p when q is equal to 2.
- **53.** If p and q vary inversely and p is 21 when q is 23, determine q when p is equal to 7.
- **54.** If p and q vary inversely and p is 4 when q is 7, determine q when p is equal to 2.
- **55.** Use the long division method to find the result when  $x^3+6x^2+10x+25$  is divided by x+5.
- **56.** Use the long division method to find the result when  $4x^3 + 5x^2 + 17x + 4$  is divided by 4x + 1.
- 57. Use the long division method to find the result when  $4x^3 + 9x^2 + 9x + 5$  is divided by 4x + 5.
- **58.** Use the long division method to find the result when  $6x^3-13x^2+12x+4$  is divided by 3x-2. If there is a remainder, express the result in the form  $q(x)+\frac{r(x)}{b(x)}$ .

- **59.** Use the long division method to find the result when  $4x^3+7x^2-13x-20$  is divided by 4x+3. If there is a remainder, express the result in the form  $q(x)+\frac{r(x)}{b(x)}$ .
- **60.** Use the long division method to find the result when  $3x^3+19x^2+28x-6$  is divided by x+3. If there is a remainder, express the result in the form  $q(x)+\frac{r(x)}{b(x)}$ .
- **61.** Expand the expression to a polynomial in standard form:

$$(4x+3)(2x^2-4x+5)$$

**62.** Expand the expression to a polynomial in standard form:

$$(3x-2)(2x^2-3x-3)$$

**63.** Expand the expression to a polynomial in standard form:

$$(x-2)(3x^2-4x-3)$$

**64.** Solve for the roots in *simplest form* by completing the square:

$$x^2 - 8x - 34 = 0$$

**65.** Solve for the roots in *simplest form* by completing the square:

$$x^2 - 12x + 39 = 0$$

**66.** Solve for the roots in *simplest form* by completing the square:

$$x^2 + 4x + 0 = 0$$

- **67.** What are the roots of the equation  $x^2 6x + 25 = 0$  in simplest a + bi form?
- **68.** What are the roots of the equation  $x^2 6x + 18 = 0$  in simplest a + bi form?
- **69.** What are the roots of the equation  $x^2 6x + 10 = 0$  in simplest a + bi form?

**70.** Solve for the roots in *simplest form* using the quadratic formula:

$$4x^2 + 1 = 12x$$

**71.** Solve for the roots in *simplest form* using the quadratic formula:

$$3x^2 + 87 = -18x$$

**72.** Solve for the roots in *simplest form* using the quadratic formula:

$$2x^2 + 32 = -20x$$

**73.** Express the product  $(3-\sqrt{7})(3+\sqrt{7})$  in simplest form.

**74.** Express the product  $\left(\sqrt{6}+5\right)\left(\sqrt{6}+5\right)$  in simplest form.

**75.** Express the product  $\left(\sqrt{2}+\sqrt{7}\right)\left(\sqrt{2}-\sqrt{7}\right)$  in simplest form.